Experiment

A. From slit to crystal

A.1 (0.3 pt)

I(q) =

A.2 (0.2 pt)

q =

A.3 (0.2 pt)

 $q(q_1) =$

Expression for q_1 and a:

A.4 (1.0 pt)

Formulas, schemes and pictures for explanation:

DG1: $q_1 =$

a =

DG2: $q_1 =$ a =

DG3:

a =

DG4:

 $q_1 =$

 $q_1 =$

a =

DG5:

 $q_1 =$

a =

Experiment | I d PhO |

	,	
A.5	(15	nt)
7. 3	1.0	DUI

Formulas, schemes and pictures for explanation:

DG3: a/b =

DG4: a/b =

DG5: a/b =

A.6 (0.7 pt)

 $\rho(x) =$

 $F_A(h) =$

h =

A.7 (0.7 pt)

 $F_B(h) =$

h =

A.8 (0.4 pt)

 $rac{I_{A,h=0}}{I_{B,h=0}} =$

 $\tfrac{I_{A,h=1}}{I_{B,h=1}} =$

B.1 (1 pt)				
$q_1 =$				
$q_2 =$				
12				
$\beta =$				
B.2 (1.0 pt)				
Crystal A	F(h,k) =			
Constal D	\D(1, 1)\			
Crystal D	F(h,k) =			
B.3 (0.6 pt)				
$a_{UC1} =$				
$a_{UC2} =$				
$a_{UC3} =$				
$a_{UC4} =$				
B.4 (0.4 pt)				
UC1 –	UC2 –	UC3 –	UC4 –	
-		- 		
B.5 (0.8 pt)				
b =				

C. Symmetries of crystals

C.2 (0.2 pt)

Equations for all possible axis symmetry:

C.3 (0.4 pt)

designation (C_m for rotational and equations for axis symmetry) and equation on intensities $I(q_x,q_y)$

$$C \hspace{3cm} I(q_x,q_y) =$$

$$C \hspace{3cm} I(q_x,q_y) =$$

$$C \hspace{3cm} I(q_x,q_y) =$$

$$I(q_x, q_y) =$$

$$I(q_x,q_y) =$$

$$I(q_x,q_y) = \\$$

$$I(q_x,q_y) = \\$$

C.4 (0.2 pt)

$$I(-h,-k) =$$

Which symmetry corresponds?

 $\mathbf{C.5} \; (0.4 \; \mathrm{pt})$

$$f_2(q_x, q_y) =$$

$$f_3(q_x, q_y) =$$

$$f_4(q_x,q_y) =$$

C.6 (0.5 pt)

List all possible rotational symmetries:

m =

A1-6
English (Official)

C.7 (0.9 pt)

C.7 (cont.)

 $\mathbf{C.8} \; (0.8 \; \mathrm{pt})$

Use this table if you need to note any information about samples.

PG					
1					
2					
5					
8					

PG1 -

PG2 -

PG5 -

PG8 -

C 9	/-	\sim	.)
1 u	<i>(</i>	11	nt

Use this table if you need to note any information about samples.

PG					
3					
4					
6					
7					
9					

PG3 - PG4 - PG6 - PG7 - PG9 -

 $\mathbf{C.10} \; (0.3 \; \mathrm{pt})$

Could it be crystal? Circle your option: Yes / No

D. You'll need the phases. . .

D.1 (1 pt)

 $I_{MR0} =$

 $I_{MR2} =$

D.2 (2.0 pt)

MR1:

D.3 (2.0 pt)

MR2: